Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hydrological modeling of large river basins and flood plains continues to be challenged by the low availability and quality of observed data for modeling input and model calibration. Global datasets are often used to bridge this gap, but are often difficult and time consuming to acquire, particularly in low resource regions of the world. Numerous calls have been made to standardize and share data to increase local basin modeling capacities and reduce redundancy in efforts, but barriers still exist. We discuss the challenges of hydrological modeling in data-scarce regions and describe a freely available online tool site developed to enable users to extract input data for any basin of any size. The site will allow users to visualize, map, interpolate, and reformat the data as needed for the intended application. We used our hydrological model of the Upper Zambezi basin and the Chobe-Zambezi floodplains to illustrate the use of this online toolset. Increasing access and dissemination of hydrological modeling data is a critical need, particularly among users where data requirements and access continue to impede locally driven management of hydrological systems.more » « less
-
null (Ed.)Inland freshwater salinity is rising worldwide, a phenomenon called the freshwater salinization syndrome (FSS). We investigate a potential conflict between managing the FSS and indirect potable reuse, the practice of augmenting water supplies through the addition of highly treated wastewater (reclaimed water) to surface waters and groundwaters. From time-series data collected over 25 years, we quantify the contributions of three salinity sources—a water reclamation facility and two rapidly urbanizing watersheds—to the rising concentration of sodium (a major ion associated with the FSS) in a regionally important drinking-water reservoir in the Mid-Atlantic United States. Sodium mass loading to the reservoir is primarily from watershed runoff during wet weather and reclaimed water during dry weather. Across all timescales evaluated, sodium concentration in the reclaimed water is higher than in outflow from the two watersheds. Sodium in reclaimed water originates from chemicals added during wastewater treatment, industrial and commercial discharges, human excretion and down-drain disposal of drinking water and sodium-rich household products. Thus, numerous opportunities exist to reduce the contribution of indirect potable reuse to sodium pollution at this site, and the FSS more generally. These efforts will require deliberative engagement with a diverse community of watershed stakeholders and careful consideration of the local political, social and environmental context.more » « less
An official website of the United States government
